
Computer Science 140 Lab 8 Page 1 of 8

Computer Science 140

Lab 8

Due Week of Dec 3-6 during your lab period.

Purpose
Demonstrate basic understanding of XML and XSLT.

Overview
Create an XML file and an XSL transform file to format the XML data in a

browser window.

If you are having difficulty making progress with this lab, confirm you have the

symbols entered correctly and completely, then contact the instructor.

Resources

Notes on XML:

http://www.w3.org/XML

http://www.xml.com

Course web site notes on XML

Prelab work

 Determine the answers to the following pre-lab questions before attempting the

lab work. Answers are not handed in for marks. Refer to the XML online notes.

1. What is the purpose of XML?

2. What are beneficial features of XML?

3. What is the difference between XML and HTML?

4. What does the term ‘well-formed’ mean?

5. What is a ‘broken’ XML file?

6. What does the term ‘valid’ mean?

7. What is a DTD used for?

8. How can the DTD specify the order in which elements must be given?

9. Which two places can a DTD be declared?

10. What does the ELEMENT declaration do?

11. What does the plus sign signify after the element name?

Computer Science 140 Lab 8 Page 2 of 8

12. What does the asterisk signify after the element name?

13. How do you specify which attribute values are needed for XML data?

14. What is XSL used for?

15. What is the purpose of an XML validator?

Process

1. Within your public_html folder on your deepblue account create a new folder

named lab8. For this lab if you use the Microsoft Internet Explorer (IE)

browser, you may have to close the browser and reopen it if you are seeing XML

or XSLT errors.

2. From the course lab web page download the ledger.txt file into the lab8 folder.

This file contains a set of nine sample sale transactions for the Pizza Palace

restaurant. The amounts in the file are arbitrary. Rename the file to ledger.xml

3. Edit the ledger.xml file. Provide the first line required for an XML file. See

your online XML course notes for the correct XML document declaration.

4. In the XML file define a root element named <ledger>. Add the required end

tag for this root element.

5. Within the <ledger> root element, create the following new <receipt>

element as the last element in the list of receipt elements.

date: 10/26/2013

customer: 136

pizza: cheese

quantity: 2

topping: pineapple

amount: 9.45

6. Validate the ledger.xml file by displaying it within the browser. If the browser

displays parsing errors in the XML, for example missing an end tag or misspelling

of an XML tag, the browser will indicate this information. Fix any parsing

validation errors before continuing.

7. Create an internal DTD for your XML document. Recall that the DTD

information appears just after the XML declaration. Since we must have at least

one receipt in the <ledger> element, we place a plus sign next to the receipt

element.

Computer Science 140 Lab 8 Page 3 of 8

<!DOCTYPE ledger [
 <!ELEMENT ledger (receipt+)>

 <!ELEMENT receipt (date, customer, pizza, quantity,
 topping*, amount)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT customer (#PCDATA)>
 . . .

Define the other <!ELEMENT for pizza, quantity, topping, amount (all

use #PCDATA)

]> � don’t forget this notation to close the ledger element description

8. The next step is to modify the structure of the DTD. We want to define a set of

valid attribute values for the topping element so that the only acceptable topping

varieties are: green pepper, mushroom, pepperoni, cheese, pineapple (in any

order). Any other variety used in the topping element will invalidate the XML.

Why would you want to do this? To ensure that unexpected or incorrect data does

not get used.

In order to complete this requirement and make the XML file valid, you will have

to add in a validation rule in the DTD section of the XML file for the topping

attribute called “variety”. Just below the last <!ELEMENT line, add the lines

<!ATTLIST topping
 variety (green_pepper |
 mushroom |
 pepperoni |
 cheese |
 pineapple)
 "cheese"
>

 There should be line already containing just]> following this ATTLIST element.

This tells the DTD that you have an attribute named “variety” associated with the

topping element and its only acceptable value is one of the above list of toppings.

The final entry “cheese” is the default.

9. Point your browser to http://www.validome.org/xml/validate and validate your

ledger.xml file (either as a local file , URL, or as text). If you receive a

validation error or warning, you must fix your ledger.xml file. Confirm you

have the symbols entered properly. XML does not care about the amount of

white space between tokens, just so long as there is no space within the token.

(e.g.

Use the vertical bar

(pipe) to separate the

options

Computer Science 140 Lab 8 Page 4 of 8

<!ELEMENT date is ok

< ! ELEMENT date) is not ok

 � incorrect end tag found

10. Edit your ledger.xml file and, for a test, remove any line containing one of the

elements inside a <receipt> element. Save the file and then revalidate the file

to confirm the process catches your intentional XML error. Restore the

ledger.xml file back to its valid form.

11. Create in the lab8 folder a new file called ledger.xsl file which will contain

information about how we want to display your XML data in a browser. The first

four lines of the ledger.xsl file are:

<?xml version='1.0'?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">

The second line indicates that this XML file is a stylesheet – the xmlns (xml

namespace) attribute provides namespace information (the prefix is xsl).

The third line indicates that the stylesheet output is intended to be in HTML format.

The fourth line shows a template element. This element matches specific XML

document nodes (elements) in the attribute match. Since the match is “/”, we want to

match all the elements in the xmls file.

Computer Science 140 Lab 8 Page 5 of 8

12. The next part of the stylesheet file is the start of the HTML we want to display.

The first HTML lines in the stylesheet file which set up a table are shown as

follows. The CSS style for the <tr> element is the inline type.

 <html>
 <body>
 <table border="2" cellpadding="4">
 <tr style="font-variant:small-caps;
 font-weight:bold;
 text-align:center;
 background-color:#faa;">
 <td> Date </td>
 <td> Customer </td>
 <td> Topping </td>
 </tr>

13. Following that HTML code we need to provide XSLT code to loop through each

receipt element in our ledger.

<xsl:for-each select="ledger/receipt">

 <tr style="background-color:#fdd;">

 <td align="right">
 <xsl:value-of select="date"/>
 </td>

 <td>
 <xsl:value-of select="customer"/>
 </td>

 <td>
 <xsl:for-each select="topping">
 <xsl:value-of select="@variety"/>
 </xsl:for-each>
 </td>
 </tr>
 </xsl:for-each>

This is extracting the values of the “date”, “customer” and “topping” elements from

the list of receipt elements. The <xsl: you see is the prefix that was defined in the

second line from above.

The is an XML entity representing the non-breaking space. In XML you

cannot use the usual set of HTML entities as or < etc.

The <xsl:for-each is somewhat similar to a loop structure in which each receipt

element is acted upon.

Computer Science 140 Lab 8 Page 6 of 8

The <xsl:value-of select is a means in the xslt to retrieve the value of an

element of that name.

This structure is building a row of lines in an HTML table.

14. End the stylesheet with the HTML end tags.

 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

15. Save your ledger.xsl file. Open your ledger.xml file and add this as line 2:

<?xml-stylesheet type="text/xsl" href="ledger.xsl"?>

This declaration tells the browser how to format this XML file using an associated xsl

stylesheet file.

16. Open the ledger.xml file in your browser and you should see a table of receipt

data containing just the date, customer and topping. You may alter the colour

shading specified to something else if you prefer.

The issue regarding how browsers display empty table cells appears in this example if

you are using the Internet Explorer browser.

The Internet Explorer browser will show the blank topping entries as cells having no

borders. The Firefox browser shows blank topping entries as cells having borders. To

make the Internet Explorer browser treat empty table cells properly, you can place a non-

breaking space character (the HTML entity) inside that empty table cell. XML

does not permit use of HTML entities coded that way, so enter its decimal equivalent,

 between the tags <td> and

Computer Science 140 Lab 8 Page 7 of 8

 <xsl:for-each select="topping">

This will make the appearance of the table consistent for both browsers even if

some of the table cells are empty.

17. Edit the ledger.xsl file so that your table shows the missing receipt

information “pizza” and “amount” in the last two columns.

18. Validate this modified version of your ledger.xml.

19. XSLT provides running totals. After the definition of the <td> </td> element

for the amount column, add the following lines of XSLT:

<xsl:variable name="total"
 select="sum(preceding-sibling::receipt/amount) + amount"/>
<td>
 <xsl:value-of select="$total" />
</td>

This XSLT defines a variable named total, which will show the running total

amounts in the rightmost column. Provide an appropriate column heading name

for this new column. When you preview the table in the browser, some of the

total values will show more than two decimal places. This amount can be

formatted using XSLT’s format-number function as in

select='format-number($total,"#,###.00")'

20. Modify one of the receipt element’s topping value so that it will not validate to

confirm the DTD will check the topping lists. Then, restore the XML file back to

its valid state.

21. The last two columns would look better aligned right so that the decimal values

all line up neatly. Add the required CSS style attribute to the two <td> tags to

do this. (Hint: text-align property).

22. Complete the HTML display to show a heading (<h2>) containing appropriate

text such as “Receipt Display by xx” with xx replaced by your name.

Hand In
1. Send me (langs@camosun.ca) an email message with “Comp 140 Lab 8” as the

email subject. Within the mail body, enter the deepblue URL to your

ledger.xml file. You may include the answers in the email body as text or as

an attachment. Do not send me MS Word documents.

5 marks – proper display of the original xml data using xsl

5 marks – display of the amount column

Computer Science 140 Lab 8 Page 8 of 8

2. The answers for the following questions can be found doing this lab or by

reviewing the XML class notes.

a. What are two differences between the definition of an XML document and an

XHTML document?

b. What is the purpose of the DTD in XML?

c. Answer True or False: All XML elements must contain at least one attribute.

d. Answer True or False: XML elements can contain other, different elements.

e. Can an XML data be well-formed but not valid? Explain.

f. If the element <topping> is missing from a <receipt> element, given the

lab DTD what will the value of <topping> variety attribute be set to?

g. Do the XML elements within a <receipt> element need to be defined in the

same order as specified by the DTD?

h. What do you need to do in the XML file to connect to the XSL stylesheet?

i. Which XSL element is used to process an XML document by looping

instructions for a set of elements?

j. In XSL how do you extract a specific attribute from an element in an XML

document?

