
JavaScript

Introduction

1

JavaScript
• background history and origins

– strengths and weaknesses

– alternatives to JavaScript

– JavaScript in the browser

– JavaScript platforms

• JavaScript and HTML

• syntax
– data types

• statements
– if/then

– iteration

• Date objects

• Array

• functions

• regular expressions

2

JavaScript origins
• Netscape and Sun Microsystems developed a

scripting language named JavaScript in 1995
to add new functionality within web pages

• originally designed for the Netscape Navigator
browser

• Brendan Eich, now CTO of Mozilla, developed
JavaScript

– originally named Mocha, then LiveScript

– Netscape changed its name to JavaScript purely
for marketing due to growing Java popularity

3

JavaScript origins

• JavaScript is not Java, a complex programming
language designed for diverse computing purposes

– Java uses static binding not dynamic binding

• all major browsers support JavaScript, now one of the
most popular web languages

• JavaScript was originally designed with a simpler Java-
like syntax just for browsers

• many language syntax similarities with Java and C

• JavaScript is an implementation of the ECMAScript
language standard (ECMA International organization –
European Computer Manufacturers Association)

4

JavaScript origins

• prior to JavaScript, web pages used server-side

programs (CGI1) to handle user interaction with

forms, buttons, and menus -- an internet

connection to web server must be maintained

• with client-side JavaScript the actions of the user

are handled by the browser not the web server –

means more information in the web page to

download from server but overall faster user

experience

5

JavaScript origins

• browsers equipped with a JavaScript engine
interpret then execute the JavaScript code as
required

• early JavaScript uses include handling user
events like mouse click, hover over a button,
and verify data entry in a form

• JavaScript is officially managed by Mozilla
Foundation

• "JavaScript" is a trademark of Oracle
Corporation

6

JavaScript - strengths
• quick development

– no special creation software required

– fast test and modify cycle

– many free resources and frameworks available

• easy to learn
– doesn’t share the more complex syntax of Java

– object oriented structure

• platform independence – all operating systems support it

• interfaces well with the DOM (Document Object Model)

• the most popular web development language
– basis for JSON, jQuery, and AJAX technologies

• small overhead for browser resources
– fast download of HTML and JavaScript script, even faster if they are in

separate files

• JavaScript code files can be easily shared

7

JavaScript - weaknesses
• parts of the language can be difficult to master

– concept of closures, anonymous methods in JavaScript

– not as well suited for team development as other languages

• rendering varies by browser
– browsers employ different JavaScript engines resulting in inconsistent

functionality and interface

• no JavaScript code hiding
– JavaScript visible within the HTML page

– consensus has become JavaScript scripts are essentially ‘freeware’

– JavaScript executing within browser could potentially have malicious code
exploits on the user’s system

• users have option to disable JavaScript in browser
– prevent storage of cookies, pop-ups, and other functionality

• search engines may ignore HTML pages containing a lot of
JavaScript code
– Web developers can isolate all the JavaScript code into a separate .js file

• JavaScript always stops running at the first sign of an error
– Even if you have multiple errors in the JavaScript, only the first one is flagged

8

JavaScript - trends

9

http://trends.builtwith.com/docinfo/Javascript

Alternatives to JavaScript
• Google Dart

– http://www.dartlang.org/docs/spec/latest/dart-language-specification.html

– supported only by Google Chrome (as of May 2012)

– syntax similar to C

• CoffeeScript
– http://www.coffeescript.org

– transcompiles to JavaScript

– language adds syntactic sugar from Ruby, Python, and Haskell

• Haxe
– http://haxe.org

– compiles to Adobe Flash, PHP, or JavaScript

• Opa
– http://opalang.org

– Can be used for client-side and server-side scripting

– Influenced by Ocaml and Erlang programming languages

• Google Web Toolkit, RubyJS, Pyjamas
– Use Java language to manage web front end applications

– RubyJS is the Ruby language implementation, Pyjamas is the python language implementation

10

JavaScript – browser console

11

Firefox and Chrome consoles show

all the methods for the object.

12

JavaScript and HTML
• HTML tags <script> </script> contain the JavaScript

portion within the HTML file

• attribute "type" identifies the MIME type of the script
(usually text/javascript)

• as of HTML 5, the "type" is optional and will default to
text/javascript if not provided

• attribute language="JavaScript1.8" is deprecated

13

<script type="text/javascript">

JavaScript source script appears in here

</script>

JavaScript and HTML
• hiding scripts from older browsers (pre-IE 6

vintage) which do not support JavaScript,
use the HTML comment element – now
obsolete <!-- -->

14

<script type="text/javascript">
<!-- Hide the script from some browsers

JavaScript program code …

// Stop hiding from other browsers -->
</script>

single line comments in

JavaScript use //

notation

JavaScript and HTML
• where to place the JavaScript code within the

HTML document?

• JavaScript programs can be included anywhere in
the header or body of the HTML

• if there is JavaScript to execute prior to the HTML
page rendering, then place it in the HTML header

• JavaScript can be defined anywhere within the
HTML body if JavaScript functionality is
appropriate for that part of the HTML

– form validation of user entered data , mouse hover, or
DHTML (dynamic HTML)

15

JavaScript and HTML
• longer or complex scripts can be placed in a separate text file

which must have a .js file extension

• usually the scripts that affect page layout are defined within the
head element and external scripts (Google analytics, e.g.) at the
bottom of the body element (just before </body>) to
improve the page rendering rendering time

• JavaScript code in the .js file cannot have the <script>
element

16

<script type="text/javascript"
src="http://www.you.com/myScript.js">

</script>
<script type="text/javascript"

src="js/myJSLib.js">
</script>

JavaScript - sample 1

17

• following page shows HTML having an

embedded JavaScript script in the body

element using DHTML to write some text

(Have a nice day!) to the browser window.

• JavaScript is updating the HTML page

content via the DOM object document

document.writeln

18

<html>
<head>
<title>JavaScript Sample 1</title>
</head>

<body>
This is sample DHTML JavaScript:
<script type="text/javascript">

// Display a greeting message.
document.writeln("Have a nice day!
");

</script>
</body> </html>

JavaScript syntax

• basic unit is one-line statement or expression
followed by a semicolon (not mandatory but
strongly recommended)

• document.writeln("...");

– JavaScript command invokes the DOM’s document
object method writeln()

• in JavaScript, as in Java, everything is case-
sensitive

– use document NOT Document or DOCUMENT

– use writeln NOT WRITELN or WriteLN

19

JavaScript syntax
• Terms:

– method
• name of a function associated with an object

• e.g. write and writeln are methods of object document

– parameter
• In the definition of the method or function, the placeholder

values passed into the method or function

• e.g function add(n) { return n+1; } // n is parameter

– argument
• The actual values used in the invocation of the method or

function

• e.g. document.write("Hello "); // "Hello" is argument

– when more than one is used, parameters and
arguments are separated by commas

20

JavaScript syntax

• JavaScript layout is free-format
– it does not matter how you format your JavaScript with

white spaces (tabs, new lines)

– multiple statements on one line separated by ;

– readability is key if you are maintaining the JavaScript code
for development

– many third party JavaScript libraries are provided in
minimized form to speed up download (all newlines and
unnecessary spaces stripped out) and may obfuscate the
JavaScript code (hinder reverse engineering)

– there are JavaScript code formatters which make
JavaScript more easily readable to humans

– http://javascript.crockford.com/code.html

21 22

<script type="text/javascript">

document.writeln ("This ") ;
document.writeln(

" is "
);

document.writeln(" a ")
;

document.writeln("line \
. \
") ;

</script>
If text spans more than

one line, use the

backslash \ to continue.

Free-format demo –

do not write

JavaScript like this!

23

JavaScript tools
• JSLint is a JavaScript program that checks for

problems in your JavaScript programs (improves code

quality)

• jslint.com

• YUI Compressor minimizes JavaScript and CSS

• developer.yahoo.com/yui/compressor

• Dojo Toolkit allows you to use and build custom web

page widgets for many platforms

• dojotoolkit.org

24

JavaScript comments
• use comments in JavaScript to explain the code

purpose and make it human readable.

• use // for one line comment and /* */ for multiline

24

// Use the numeric sort function.
function s(a,b) {

return (a-b);
}
/*
This code will write to a heading.

*/
document.getElementById("theHeading").innerHTML
= "This is the beginning.";

JavaScript methods
• document.writeln("Hello
");

– outputs the text Hello
 to the browser, which
interprets it as HTML information

– writeln is one of many methods associated with the
object document

• all methods are functions in JavaScript

• in JavaScript, methods are called by combining
the object name with the method

– objectname.methodname

• if the object name is omitted, the window object
is assumed (e.g. alert is window.alert)

25

JavaScript methods

• data that the method needs to perform is
provided as an argument within the
parenthesis:

document.write("Welcome !");

document.writeln("Have a great day!");

• script container does not affect the HTML
structures where it occurs, so any format tags
or elements in the HTML file will affect the
text produced by write() and writeln()
methods

26

27

<html>
<head>
<title>JavaScript Sample 2</title>
</head>

<body>
Here is a sample JavaScript
<script type="text/javascript">

// Display a message
document.writeln("This text appears as bold. ");
document.writeln(" ");

</script> </body> </html>

JavaScript - prompt

• JavaScript can interact directly with the user

• simplest way is with the JavaScript prompt()
method

• prompt displays its first argument as the

prompt text

• optional second argument is displayed as the

default value within the dialog box

• empty string is returned if user clicks OK

without providing any text

28

29

<script type="text/javascript">

var name = prompt("Enter your name:",
"visitor"));

document.write("Welcome " + name);

var sign = prompt("What is your zodiac sign?");

document.write("
");

document.write("Your sign is " + sign + ".");
</script>

JavaScript - prompt

• the prompt method doesn’t need to be

prefixed by document. because it is a method

of the window object

• if the object name is missing, then window
object is assumed

– e.g. JavaScript functions parseInt,

parseFloat, isNaN do not require to be

prefixed by window.

30

JavaScript - alert

• alert dialog box

• useful to show some information in a dialog

box

• alert("Click OK to continue.");

• useful to point out

– incorrect information in a form

– invalid result from a calculation

– other immediate messages

31 32

<script type="text/javascript">

document.write('');

alert("Attention !");

</script>

JavaScript - variables

• variable names are case sensitive and must start
with a letter, dollar sign, or underscore;
subsequent characters can be digits 0-9; no
reserved JavaScript keywords* allowed

• best practice: variable name starts with a-z

• valid JavaScript variable names:
a rangeRow x1 p_input salary2012

• invalid JavaScript variable names:
a# @tag 4H X factor true

• * https://developer.mozilla.org/en/JavaScript/Reference/Reserved_Words

33

JavaScript - variables

• keyword var declares variables

• subsequent use of var for the same variable

within the same script block is unnecessary

var a;

var selection;

var b, c, d;

34

JavaScript - constants

• a read-only named constant is created with

the const keyword

• same name rules as for variables

• constants cannot change value or be re-

declared

• cannot use same name as an existing function

or variable

const g = 10.5;

35

JavaScript - assignment
• the single equals sign = is the assignment

operator e.g. variable = expression;

• expression on the right is evaluated and the

variable name on the left represents that value

var a = 0; // declare variable a having value 0

a = 100+1; // variable a now has value 101

a = "cat"; // variable a now has value "cat"

var b = 0, c = true, d = "atom"; // 3 variables

a = b; // variable a now has value zero

36

JavaScript – scope rules
• in general, always preface the declaration of

new variables with the var keyword

• if you declare a new variable without the var
keyword (implicit declaration), you may be

accidentally changing the value of the same

variable name found in a higher scope…but

you are permitted to use delete statement

on it … not so if you use the var keyword

• more about this later in the scoping section in

functions
37

JavaScript - block

• a block statement is used to group one or

more statements within braces { }

• commonly used with control flow as in loops

38

{
statement_1;
statement_2;
…
statement_n;

}

JavaScript - block
• JavaScript does not have block scope. Variables

declared within a block are scoped to the
containing function or script, and any assignment
of values to them continue beyond the block
itself. (v1.7 JavaScript introduces a let keyword which
changes this – to be discussed later)

39

var a = 1;
{

var a = 5;
}
// variable a is 5

JavaScript - variables

• multiple variables may be declared with one

var statement – each separated by a comma
var a = 0, b, c = 100, d = "blue sky", e = a;

• this practice is slightly more execution

efficient than declaring each variable with a

separate var but not as maintainable

– potentially, an error will occur if you remove a

declared variable and the comma separator

– e.g var a = 0 , b d = "blue sky", e = a;

40

JavaScript – data types

• JavaScript provides five primitive data types

– numeric as in 0, -21, and 32.62

– strings as in "Hello" and ‘There’

– Boolean (logical) either true or false

– null special keyword for a nothing value; null is

primitive and case-sensitive (not NULL or Null)

– undefined for something not yet assigned a

value or an unknown variable; also primitive

41

JavaScript - numeric
• an integer number is a sequence of digits

– range is -253 to 253 (-9007199254740992 to 9007199254740992 inclusive)

– base 10 integers (decimal) do not start with a zero

– base 8 integers (octal) start with a zero (deprecated)

– base 16 integers (hexadecimal) start with 0x

42

var a = 0100; // a is 64
var b = 100; // b is 100
var c = 0x010; // c is 16

var d = 0x3a – 0200; // d is -70
var e = -073 – 0x0b; // e is -68

JavaScript - numeric
• floating point literals

– floating-point literals must have at least one digit

and either a decimal point or "e" (or "E")

– range is 5e-324 to 1.797e308

– JavaScript keyword: Infinity or –Infinity
– Number.POSITIVE_INFINITY, Number.NEGATIVE_INFINITY

and Number.MAX_VALUE, Number.MIN_VALUE

43

var a = 10.010101;
var b = -0.99;
var c = 1.45E10;
var d = 2e-2;
var bigNum = 2/0; // bigNum is Infinity

JavaScript - string
• strings store a piece of text

• JavaScript has two kinds of strings: primitives and
objects

• primitives: can use JavaScript String() or
assignment
var txt = String("Hello");
var txt = "Hello";

• objects: use new String()
var txt = new String("Hello");

• use primitive form unless object form is required.

44

JavaScript - string
• string length displayed using length method

var txt_len = "hello".length; // txt_len is 5

• empty string "" has a length of zero

• special characters such as "'\ and backspace,

newline, tab, carriage return can be defined

within a string this way: "\b" " \" ", ' \'',

"\\", " \n", "\t", "\r" respectively

var t = "He said, \"Welcome\".";

45

JavaScript - string

• concatenation operators are + and +=

"Welcome to " + "my house" makes the
string "Welcome to my house"

welcome += " Thank-you." adds the string
"Thank-you." to the end of the string variable
named welcome

also, string1.concat(string2) method

var n = "abc";
var t = n.concat("xyz");

// t is "abcxyz"; n is "abc"

46

JavaScript - string

• access an individual character within a string

in two ways, using the charAt method or as an

array (first character is index zero)

– "mouse".charAt(1) is "o"

– "mouse"[1] is "o"

47

var pet = "mouse";
var c = pet.charAt(1); // c is "o"
c = pet[1]; // c is "o"

JavaScript - string
• substr method returns a portion of a string

– string.substr(start_index, length) length is
optional but if not provided, extract characters until
end of string

48

var answer = "quick";

var n1 = answer.substr(1, 2); // ui

var n2 = answer.substr(2); // ick

var n3 = answer.substr(-1); // k

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String#Properties_2

JavaScript - string

• replace method substitutes one substring

with another

– string.replace(search_string, new_string)

49

var t = "white car with white seat";

var n = t.replace("white", "blue");
var p = t.replace(/white/g, "red");

// n is "blue car with white seat"
// p is "red car with red seat"
// t is "white car with white seat"

JavaScript - string

• toLowerCase and toUpperCase convert

the string’s case

– these two methods require no arguments

50

var city = "Victoria, BC";

var n1 = city.toLowerCase(); // victoria, bc

var n2 = city.toUpperCase(); // VICTORIA, BC

// city is still
// Victoria, BC

JavaScript - string

• string "null" is not the same as null

• string "undefined" is not the same as

undefined

• string "" is not the same as null or undefined

51

JavaScript - boolean
• boolean values are either true or false

• double equals operator == tests if two operands represent
the same value (but not the same type)

• triple equals operator === tests if two operands represent
the same value and the same type

• non-zero numeric values evaluate to true

• null, undefined, NaN, and "" evaluate to false

52

var a = true;
var b = false;
var c = (1 == 1); // c is true

var d = (a = 2); // d is true, a is 2

var e = (1 == "1"); // e is true

var f = (1 === "1"); // f is false

JavaScript - typing

• JavaScript is a dynamically typed programming
language

– variables are not defined by data type at declaration
but by their values (or ‘literals’)

• the type of a literal is defined based on context
(run-time)

• when combining literals of different types, the
first type is used

• Java and C are statically typed – the type of the
variable is set at compile time permanently

53

JavaScript - typeof
• the typeof operator is unary – use of () optional

– e.g. typeof("pumpkin"), typeof(563),

typeof(true), typeof(null), or typeof "squash"

– returns type of the operand: "number", "string",

"boolean", "object", "function", undefined, "xml"

54

var a = "cherry";
var a_type = typeof(a); // a_type is "string"
var b = 3.14;
var b_type = typeof(b); // b_type is "number"
var c;
var c_type = typeof c; // c_type is undefined
var d = null;
var d_type = typeof d; // d_type is "object"

JavaScript – dynamic typing

var a = 99;

var b = "Ninety nine";

var c = 100 + 100; // c is 200

var d = (a < 100); // d is true

var e = d && (c > 100); // e is true

a = e; // a is true

var f = “100” + 10; // f is 10010

var g = “100” – 10; // g is 90

55

JavaScript – weak typing
• JavaScript is also weakly typed

– no restrictions on use of operators (such as the
plus sign) involving values of different data types

• JavaScript rule: when you use + with a number
and a string in any order you get a string result

var a = 100;

var b = "+100";

var sum = a + b; // sum is "100+100" not 200

sum = parseInt(a) + parseInt(b); // sum is 200

56

JavaScript - casting
• JavaScript data type examples

– "Count to " + 10 is "Count to 10"
– and 2.5 + "10" is "2.510"

• parseInt() and parseFloat() JavaScript
functions cast values to a new type :
– parseInt("12") returns the integer 12

– parseFloat("33.23") returns 33.23

– parseInt("23.66") returns 23

– parseInt(undefined) and parseInt(null)
returns NaN (not a number)

– optional second argument is the radix (10 is default, 16, or 8 but that
is deprecated) parseInt("0xaa", 16) is 170 decimal.

• see http://jsfiddle.net/Stevelang/vpenh/

57 58

<script type="text/javascript">

var answer = 99;

answer = "Ninety nine ";

var question = "What is 9 times 11? " + answer;

document.write(question + "
");

question = answer + " is 9 times what number?";

document.write(question);
</script>

JavaScript - expressions
• expressions in JavaScript come in four types

– assignment which assigns a value to a variable

– arithmetic evaluates to a number

– string evaluates to a string

– logical evaluates to a boolean value (true or false)

• use the keyword var to declare a variable and
optionally assign it an initial value

• a variable declared using var with no initial value has
the value undefined

• it’s possible to drop the var keyword but that makes
the variable global scope -- not recommended

59

JavaScript - assignment

60

var x = 10;
var y = 5;

x += y; // x is now 15 (10 + 5)

x *= y; // x is now 75 (15 * 5)

x /= y; // x is now 15 (75 / 5)

x %= y; // x is now 0 (15 / 5 leaves 0
// remainder)

61

var x = 10;
var y = 5;
var z;

x++; // increment operator; x is now 11

y--; // decrement operator; y is now 4

z = ++y; // z is 5 and y is now 5 (avoid this)

z = x--; // z is 11 and x is now 10 (avoid too)

JavaScript - assignment

62

• use double equals sign (no space) == to test if

two expressions are equivalent in value

1 == 1 "1" == 1 "100" == 99 + 1

• use "bang equals" != for not-equal test
"a" != "A" 100 != 99.9 null != undefined

• comparison operators < > <= >= test for

less than, greater than, less than or equal,

greater than or equal – these 3 are true:
100 < 111 "12" < "2" "apple" > "Apple"

JavaScript - comparison

JavaScript - comparison

• triple equals sign === tests if two expressions

are equivalent in value and the same type

1 === 1 "cat" === "cat" 1 === "1" (false)

• the !== tests if two expressions are not

equivalent and the same type

1 !== "1" (but 1 == "1" is true)

• null === undefined is false but

null == undefined is true

63

JavaScript - logical

• logical AND operator is two ampersands: &&

• logical OR operator is two vertical pipes: ||

• logical NOT operator is a single bang: !

64

var x = 10;
var y = 5;

var a = (x < y) && (x == 5); // false
var b = (x > y) || (x < 5); // true

var c = !b; // c is false

JavaScript - conditional

• ternary operator as in C, C++

(expression) ? value1 : value2;

– if (expression) evaluates true, then value1 is

returned; otherwise, value2 is returned

var a = (3 == 4) ? "y" : "n"; // a is "n"

• can lead to cryptic programming code if

overused

65

Bit Manipulation operators

• JavaScript operators shift bit representations

66

Operator Name Description

& Bitwise AND Performs an AND on each bit position

| Bitwise OR Performs an OR on each bit position

^ Bitwise XOR Set result bit to 1 only if either not both bits is 1

~ Bitwise NOT Inverts the bits of the operand

<< Bitwise left shift Shift all the bits to the left, leftmost bit dropped

>> Bitwise right shift Shift all the bits to the right, keep the sign

>>> Bitwise zero-fill

right shift

Shifts all the bits to the right

Bit Manipulation examples
Expression Result Binary Description

15 & 9 9 1111 & 1001 = 1001

15 | 9 15 1111 | 1001 = 1111

15 ^ 9 6 1111 ^ 1001 = 0110

~15 0 ~1111 = 0000

9 << 2 36 1001 shifted 2 bits left = 100100

9 >> 2 2 1001 shifted 2 bits right = 10

19 >>> 2 4 10011 shifted 2 bits right = 100

67

Order of Precedence
Precedence Operator

1 . (dot operator) [] new

2 Function call ()

3 ++ --

4 ! (logical not) ~ (bitwise not) + (unary) - (unary) typeof void delete

5 * / %

6 + (addition) - (subtraction)

7 << >> >>>

8 < <= > >= in instanceof

9 == != === !==

10 & (bitwise and)

11 ^ (bitwise xor)

12 | (bitwise or)

13 && (logical and)

14 || (logical or)

15 ? :

16 yield

17 = += -= *= /= %= <<= >>= >>>= &= ^= |=

18 , (comma operator)

68

JavaScript – if block
• test a condition is met with an if else block

if (expression) {

block of statement(s) to execute if

expression true

} // do not forget the matching closing brace }

69

var diff = 3-2;
if (diff == 1) {

document.writeln("diff is 1");
}

JavaScript – if block
if-else statement version:

if (expression) {

block of statements if expression true

} else {

block of statements if expression false

}

70

var diff = 3-2;
if (diff == 1) {

document.writeln("diff is 1");
} else {

document.writeln("diff is NOT 1");
}

JavaScript - if block

71

var day = "Sunday";

if (day == "Saturday") {
document.writeln("It’s the weekend!");
the_weekend = true;

} else {
document.writeln("Back to work.");
the_weekend = false;

}

JavaScript – if block
• multiple tests combined into one if statement

72

var day = "Sunday";
var message;
if (day == "Saturday") {

message = "It’s the weekend!";
} else if (day == "Monday") {

message = " Back to work. ";
} else if (day == "Friday") {

message = " TGIF ! ";
} else {

message = " Just another day. ";
}

JavaScript – if block
• when statement blocks are just one

statement, the { } braces are optional

73

var day = "Sunday";
var message;
if (day == "Saturday")

message = "It’s the weekend!";
else if (day == "Monday")

message = " Back to work. ";
else if (day == "Friday")

message = " TGIF ! ";
else

message = " Just another day. ";

Nested if blocks
• it is possible to nest if statements within

another if statement

74

var x = (2-3);
if (x < 0)

sign = -1;
else {
if (x == 0)
sign = 0;

else
sign = 1;

}
// acceptable form

var x = (2-3);
if (x < 0)

sign = -1;
if (x == 0)

sign = 0;
if (x > 0)

sign = 1;

// not recommended form

JavaScript - switch
• JavaScript switch statement tests an expression against

a list of values

switch (expression) {
case value1 :

statement(s)
break;

case value2 :
statement(s)
break;

....

default :

statement(s)

}

75

if expression does

not find a match,

then default applies.

if expression matches

value1, then do these

statements only.

JavaScript - switch
• JavaScript switch is similar to if-else statement

if (expression == value1) {
statement(s) for value1

} else if (expression == value2) {
statement(s) for value2

} else {
statement(s) for the default

}

76

JavaScript - switch
• JavaScript switch statement tests an expression

against a list of literal or expression values

77

var day = "Sunday";
switch (day) {

case "Saturday" :
document.write("Weekend started.");
break;

case "Monday" :
document.write("Back to work.");
break;

default :
document.write("Another day.");
break;

}

String literals

78

<script type="text/javascript">
var name = prompt("Enter your name:",

"visitor"));
document.write("Welcome " + name);
var sign = prompt("What is your zodiac sign?");

switch(sign.toLowerCase()) {
case "aries" :
case "taurus":
case "gemini":
document.write("You are witty and smart.");
break;

case "virgo":
case "capricorn":
case "libra":
document.write("You are cool and hip.");
break;

default:
document.write("You are fun and adventurous.");
break;

}

</script>

JavaScript - confirm

• confirm method allows the user to select

an OK button or a Cancel button

• confirm returns true if OK clicked, false if

Cancel clicked

79

if (confirm("Press OK to retry."))
response = prompt("What is 2+2 ?", "3");

80

<script type="text/javascript">

// define variables

var question = "What is 10 + 10?";
var answer = 20;
var correct = '';
var incorrect ='';

JavaScript - sample 2

• mathtest.html demonstrates the JavaScript

confirm method in action

1 of 3

81

// ask the question

var response = prompt(question,"0");

// check the answer

if (response != answer) {

// wrong answer; retry once more.

if (confirm("Wrong! \

Press OK for a second chance."))

response = prompt(question, "0");

}

2 of 3

82

// Check the answer.

var output =
(response == answer) ? correct : incorrect;

// output will be one of these two strings:
''
''

</script>
</head>

<body>
<script type="text/javascript">

document.write(output);

</script>

3 of 3

8383

var student = { name: "Smith, John",
id: 103923,
program: "CSC",
dob: new Date(1990, 3, 20) };

document.write(student.name); // Smith, John

document.write(student["program"]); // CSC

JavaScript – object literal

• a JavaScript object literal is delimited by { }

which contains the object’s properties as

name:value pairs, separated by commas.

JavaScript - eval

• eval() method

– evaluates a string parameter to its numeric value

• e.g. eval("4 + 5") returns a value of 9

– avoid using eval if possible – there are potential

side effects, especially if the string parameter

contains malicious code

• http://javascriptweblog.wordpress.com/2010/04/19/how-evil-is-

eval/

84

JavaScript - iteration

• iteration is the process of repeating the execution
of one or more statements until some end
condition is reached

– each time the iteration body is executed is a cycle

• example 1 : continually prompt user until right
answer is entered

• example 2 : display the month names (January,
February, etc) of the entire year

• example 3 : calculate and show the values of a
multiplication table up to 12 x 12

85

JavaScript - iteration

• the while statement indicates iteration

• conceptually:
while (condition is true)

perform these statement(s) within
body of iteration in order continually

• in practice:

while (expression) {
one or more statements;

}

86

JavaScript - iteration

• the expression must evaluate true for the

statements in the iteration body to be

executed

• implies it is possible for the iteration body to

be not executed at all if the expression is false

initially

87

JavaScript - iteration

8888

var a = 0;
var sum = 0;
while (a <= 10) {

sum += a;
a++;

}
document.writeln("sum of 1 to 10 = " + sum);

var answer = 0;
while (answer != 10) {

answer = prompt("What is 5 + 5?", "0");
}

This iteration body

will cycle 11 times.

JavaScript - iteration
• some gotcha’s using while

– no semi-colon allowed between the condition and

iteration body – this leads to a never-ending loop (aka

infinite loop)

while (a < 10) ; { // oops, an infinite loop !
a++;

}

– condition must at some point become false

– braces may be omitted if iteration body is one

statement

while (a < 10) a++;

89

JavaScript - iteration
• some gotcha’s using while

– sometimes while condition is always true but within

the iteration body there is a break to end the loop

while (true) {

… if (some condition) break;

}

– condition expression can be an assignment statement

by mistake -- watch the equals sign!

while (a = 0) vs while (a == 0) // first is false

while (a = 1) vs while (a == 1) // first is true

90

JavaScript - iteration

• Some gotcha’s using while

– forgetting to increment the counter if it is used in

the condition

var n = 0;
var sum = 0;
while (n < 10) {

sum += n; // oops, n is always zero
}

91

JavaScript - iteration

• another form of iteration: for

• useful when number of iterations is known

• conceptually:

for (each step in loop counter)

execute statement(s)

• in practice:

for (optional initial statement(s);
condition;
optional end body statement(s))

execute statement(s)

92

JavaScript - iteration

93

var sum = 0;
for (var n = 0; n <= 10; n++) {

sum += n;
}
document.writeln("sum of 1 to 10 = " + sum);

var pets = new Array("cat", "dog", "fish");
for (var i=0, len=pets.length; i < len; i++) {

document.write("I have a "
+ pets[i]
+ ".
");

}

JavaScript - iteration

• if only one statement in body, braces may be
omitted

for (var n = 0; n < 10; n++) sum += n;

• the initial statement and end statement (usually
an increment) are optional

var n = 0;
for (; n < 10 ;) {

… n++;
}

- same as a while loop

94

JavaScript - iteration

• if the condition is false initially, the iteration

body will not be executed at all and execution

will proceed with the next statement after the

end of the iteration body
var sum = 0;

for (var n = 0; n > 1; n--) { // oops, 0 should be 10
sum += n; // never executed

}

document.write("sum is " + sum); // sum is 0

95

JavaScript - iteration

• the do while iteration is similar to while but the
condition is after the iteration body

• guarantees the iteration body is executed at least
once

var n = 0;
do {

n++;
document.write("n has value "

+ n);
} while (n < 10) ;

96

JavaScript - iteration
• an iteration body may include an iteration

• "outer loop" contains an "inner loop"

var a = 0;
while (a < 10) {

var b = 0;
while (b < 10) {

document.writeln(a * b);
b++;

}
document.writeln("< /br>");
a++;

}

97

JavaScript - iteration

for (var a = 0; a < 10; a++) {
for (var b = 0; b < 10; b++)

document.writeln(a * b);

document.writeln("
");
}

98

JavaScript - iteration

• labels are used to assign a unique identifier to
a location within the JavaScript code

– usage is label_name followed by a colon at the
start of a line (after any white space is removed)

• label names cannot be JavaScript reserved
words, case-sensitive rule applies!

label_one :
var a = 0;
while (a < 10) { …

99

JavaScript - iteration

• the break statement terminates the innermost
while, do while, for, or switch immediately and
transfers control to the following statement

• the break label form terminates the specified
enclosing label statement
var n;
for (n = 0; n < 10; n++) {
if (n == 5)

break; // immediately exit for loop
} // n is 5

100

JavaScript - iteration

• another example of the break in an iteration

while (true) {

… continuously process some steps

… if (a condition becomes true)

break;

}

101

JavaScript - iteration

• the continue statement immediately causes

the iteration body to start at the next cycle

– subsequent statements in the iteration body are

not executed in the current cycle

– execution begins at the start of the iteration body

(while loop) or with the counter increment (for

loop)

– continue may be used only within the for or while

loop

102

JavaScript - iteration

103

// Sum up the odd integers from 0 to 20.
var sum = 0;

for (var a=0; a <= 20; a++) {

if (a % 2 == 0) {
continue;

}
sum += a;

}

JavaScript - iteration

• break and continue may indicate an optional

label, e.g.

break calculateSum;

continue releaseMemory;

• break label means stop executing the

statement at label (likely a loop of some kind)

• continue label means transfer execution to the

statement at label

104

JavaScript - iteration

105

Outer:
for (var a=1; a <= 10; a++) {

Inner:
for (var b=1; b <= 10; b++) {

document.write((a*b) + " ");
if (a > 5) {

break Inner;
}

}
document.write("
");

}

JavaScript - iteration

106

Outer:
for (var a=1; a <= 5; a++) {

Inner:
for (var b=1; b <= 5; b++) {

if (a > 5) {
continue Inner;

}
document.write((a*b) + " ");

}
document.write("
");

}

JavaScript - iteration

• use the while iteration when you do not know

in advance the number of iterations

• use the for iteration when you do know in

advance the number of iterations

• avoid use of break and continue if possible

– misuse or overuse can lead to ‘code spaghetti’

107 108108

JavaScript - function

• the function definition statement consists

of the function keyword, followed by:

• the name of the function

• a list of arguments enclosed in

parenthesis and separated by commas

• the JavaScript statements that define the

function, enclosed by braces { }

108

109

JavaScript - function
• the function declaration defines a set of

statements which performs a task

109

function function_name(parameter(s)) {
statement block

}
e.g.

function printName(myname) {
document.write("Your name is ");
document.write(myname);
document.write("");

}
printName("Clark Kent"); // Your name is Clark Kent

JavaScript - function

• JavaScript functions are usually defined in the
header element in the HTML or in separate file

• this ensures that all functions have been parsed
before it is possible for user events to invoke a
function

• function name rules same as for variables
– if you accidentally name a variable having the same

function name, the variable overrides the function

• parameter names are separated by commas

• no type checking is performed on arguments

110

JavaScript - function

• a function may return a value

111

function calculateArea(height, width) {
return height * width; // returns a number

}

var h = 100;
var w = 25;
var area1 = calculateArea(h, w); // area1 is 2500

var area2 = calculateArea(h, 33); // area2 is 3300

JavaScript - function
• a function may return a string

112

function encode(message) {

var coded = "";
for (var i=0,len=message.length; i<len; i++) {

var ch = message[i];
if (/[a-z]/i.test(ch)) { // is the character a-z ?

coded +=
String.fromCharCode(ch.charCodeAt(0) + 1);

} else {
coded += ch;

}
}

return coded;
}
var m = "April is a happy month!";
var x = encode(m); // x is "Bqsjm jt b ibqqz npoui!"

JavaScript - function
• primitive parameters (strings, numbers) are

passed by value, meaning if the function

changes the parameter values, the change is

lost when the function returns or ends

113

function calculateArea(height, width) {
height += 10;
return height * width;

}

var h = 100;
var w = 25;
var area1 = calculateArea(h, w); // area1 is 2750

document.write(h); // h is 100

JavaScript - function
• non-primitive parameters (arrays, objects) are

passed by reference, meaning if the function

changes the parameter properties, the change

is kept when the function returns or ends

114

function foo(a, obj) {
a[2] += 10;
obj.name = "parsnip";
obj = { name: "carrot"; } // assign new object works only within function

}

var arr = [1, 2, 3];
var w = { name: "turnip" };
foo(arr, w);
document.write(arr + "" + w.name);// arr is [1,2,13], w.name is parsnip

JavaScript functions

• in JavaScript functions are first-class objects

– can be manipulated and treated like objects

• keyword Function defines a function object
dynamically created at run-time

– new Function(optional param1, param2, …,
body of function as a string);

var fun = new Function(a, "return a");

var g = fun();

• sample HTML file testing.html

115 116

<script type="text/javascript">

// define function testQuestion()

function testQuestion(question) {

// define local variables

var ftmp = new Function(' return ' + question);

var answer = ftmp(); // answer is 9

var output = "What is " + question + "?";
var correct = '';
var incorrect ='';

1 of 3

117

// ask the question

var response = prompt(output, "0");

// check the result

return (response == answer) ?
correct :
incorrect;

}

</script>
</head>

2 of 3

118

<body>

<script type="text/javascript">

var result = testQuestion("4 + 5");

document.write(result);

</script>

3 of 3

119

JavaScript functions

• functions may be defined inside within a

function

• inner function is private to outer function

• inner function can be accessed only from

the outer function

• inner function can use arguments and

variables of outer function but outer

cannot use inner’s arguments or variables

120

JavaScript - functions

120

function foo(c) {
var x = 100;

function bar(arg1, arg2) {
if (x > 99) arg1++; // x access allowed in inner function

return (arg1 + arg2);
}
return bar(x, c); // returns 101 + 10

}

var n = 10;
var p = foo(n); // p is 111 (101 + 10)
document.write(p);
document.write(bar(10,10)); // not allowed – out of scope

outer function is foo

inner function is bar

121

JavaScript – recursive function

121

• functions may be recursive; a function may

call itself inside the function declaration

function factorial(n) {
if ((n == 0) || (n == 1))

return 1;
else

return (n * factorial(n – 1));
}

var a = factorial(4); // a gets value 24

122

JavaScript – function arguments

122

• arguments of a function are kept in an array-

like object named arguments

function sumup(n) {
var sum = 0;
for (var i = 0; i < arguments.length; i++) {

sum += arguments[i];
}
return sum;

}

var a = sumup(3,4,5); // a gets value 12
var b = sumup(1,-3,1,3,4); // b gets value 6

123

JavaScript – Number and String

123

• JavaScript has built-in functions Number and

String to convert an object to that type

var today = new Date;
var x = String(today);

// x is "Mon Aug 20 04:37:33 GMT-0700 2012"

var str = "123";
var n = Number(str); // n is 123

JavaScript – exception
• handling potential errors during run time is

important

• the throw statement provides error handling

• in JavaScript any object can be thrown, though

it is usually a number or a string

124

Examples:

throw "Error 100";
throw 1033;
throw false;
throw ReferenceError();

JavaScript – try catch
• the try…catch marks a block of statements

to try, and if there is an error (or ‘exception’),

the catch block controls the process neatly

• An exception ‘thrown’ within a try block is

managed in the ‘catch’ block

125

var a = 0;
try {

if (a == 0) throw "a is zero";
}
document.write("a not zero"); // never executed because exception is thrown.

} catch (e) { // e is the exception parameter.
// a is found to be zero

if (e == "a is zero")
document.write("error – a is zero");

}

JavaScript – finally
• with the try…catch blocks is an optional
finally block

• code within the finally block will execute
after the try and catch blocks execute but
before the statements following the try…catch

• finally block executes whether or not an
exception is thrown

• use finally block to release a resource your
code is using (such as an open file)

126

127

JavaScript – finally

try {
openMyFile();
writeSomeData(theData); // May cause error.

} catch (e) {
handleError(e); // If error, handle it.

} finally {
closeTheFile(); // Always close file.

}

JavaScript – Error object
• the Error object in JavaScript allows you to create

your own error message object and throw it

• IE browser supports an optional number

• Firefox browser supports a message, filename,line#

• Opera, Chrome, Safari support only message

128

var a = 0;
try {

if (a == 0) throw new Error("a is zero");
}
document.write("a not zero"); // never executed because exception is thrown.

} catch (e) { // e is the exception parameter.
// a is found to be zero

if (e.message == "a is zero")
document.write("error – a is zero");

}

message

JavaScript – variable scope

• when you declare a variable outside of any
function, it is called a global variable because it is
visible to any other JavaScript code in the current
document

• if you declare a variable inside a function, it is
local to that function only and not visible to
JavaScript outside that function

• if the function declares a new local variable
having the same name as a global, the function
uses the local variable

129

JavaScript – scope ex 1

130

var a = 100; // global

function myfun() {
var b = 200; // local to myfun only

a++; // variable a is global
var c = b + a; // variable c is local
document.write(c);

}

myfun(); // call function myfun, displays 301
document.write(a); // displays 101
if (typeof c != undefined)

document.write(c); // nothing displayed

JavaScript – scope ex 2

131

var a = 100; // global

function myfun() {
var b = 200; // local to myfun only

var a = 10; // local – not the global
a++; // this variable a is local
var c = b + a; // variable c is local
document.write(c);

}

myfun(); // call function myfun, displays 211
document.write(a); // displays 100
if (typeof c != undefined)

document.write(c); // nothing displayed

JavaScript – scope ex 3

132

var a = 100; // global

function myfun() {
var b = 200; // local to myfun only

var a = 10; // local – not the global
window.a++; // this variable a is global
var c = b + window.a; // variable c is local
document.write(c);

}

myfun(); // call function myfun, displays 301
document.write(a); // displays 101
if (typeof c != undefined)

document.write(c); // nothing displayed

JavaScript - scope
• JavaScript uses hoisting to move the

declaration of any declared variables within a

function to the top of the function

133

function myfun1() {
document.write(a + b);
var a = 10;
var b = 20;

}
function myfun2() {
var a, b;
document.write(a + b);
a = 10, b = 20;

}

Identical functions

JavaScript - object

• objects in JavaScripts are similar to objects in
real life with properties, type, and behaviour

• A car object has properties:

– colour, make, model, year, VIN, transmission,
manufacturer

• A car object has type:

– car is a type of a vehicle

• A car object has behaviour:

– accelerate, decelerate, turn left, turn right, stop

134

JavaScript Date object
• a Date object in JavaScript represents a single

date

• three different usages:

variable = new Date(parameters);
where the parameters indicate year, month, day,

hour, minute, second, milliseconds in order

– if no parameters, current date assumed; otherwise

year, month and day must be provided

– if hour and minute not provided, then midnight

assumed (0 hour, 0 minute)

– if year < 100, then 1900 + year is assumed

135

JavaScript Date object
variable = new Date("date string");

where the date string represents a text form of
the date as in
"October 7, 1995"
"October 7, 1995 12:43"

variable = new Date(milliseconds);

where milliseconds is an integer value
representing the number of milliseconds since
1 January 1970 00:00:00 UTC (Unix Epoch)

new Date(1343053807040);

136

JavaScript Date object

• UTC (Universal Time coordinated) is a
timezone-independent method of storing time
values, based on milliseconds since midnight,
January 1, 1970 in the Greenwich Mean Time
zone

• all dates and times are stored internally in
JavaScript using UTC format

• Date objects have both UTC and non-UTC
methods to get and set date and time values

• https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Date

137

JavaScript Date object

138

var today = new Date();
var birthday = new Date(1962, 7, 24); // Aug 24, 1962

var party = new Date(96, 3, 23, 8, 0, 0);
// Apr 23, 1996, 8:00AM

var d1 = new Date(2012, 4, 12); // May 12, 2012

var d2 = new Date("November 3, 2011");
var d3 = new Date("May 1, 2011 9:00 PST");

var d4 = new Date(1343053807040);
// July 23, 2012 3:33 PM PST

JavaScript Date object

• if the Date cannot be determined to be valid,

the Date is set to be "Invalid Date"

• if the new keyword is not used to create the

Date object, then the date value is returned as

a string object rather than a Date object

• Date objects can be subtracted from each

other to obtain the amount of separation time

in milliseconds

139

JavaScript Date object

140

var today = new Date(); // current date and time

var yesterday = new Date(2012, 7, 23);

var elapsed = today – yesterday;
// number of millisecs since start of Aug 23, 2012 (00:00)

elapsed = elapsed / (60 * 60 * 24 * 1000);
// number of hours since start of Aug 23, 2012 (00:00)

JavaScript Date object

• Date object methods:

getDate() returns the day of the month (1-31)

getFullYear() returns the year in four digits

getMonth() returns the month (0 – 11)

getTime() returns milliseconds since midnight

Jan 1, 1970

plus many more methods … check link
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/

141

JavaScript Date object

142

var today = new Date("May 2, 2012 5:15 PM");
var yr = today.getFullYear();
var month = today.getMonth();
var day = today.getDate();
var hr = today.getHours();
var min = today.getMinutes();
document.write("Today is "

+ yr + " "
+ month + " "
+ day + " "
+ hr + " "
+ min);

// displays: Today is 2012 4 2 17 15

JavaScript Date object

• third party JavaScript libraries available for
parsing, manipulating, and formatting dates

– Date.js
http://www.datejs.com/

– Moment.js
http://momentjs.com/

– dateFormat.js
http://blog.stevenlevithan.com/archives/date-time-format

– Date Extensions
http://depressedpress.com/javascript-extensions/dp_dateextensions/

143

JavaScript - array

• an array literal is a list of zero or more

expressions, each an array element, enclosed

by square brackets []

• the length of the array literal is the number of

elements it contains

• array elements are referenced by [index]
var pets = ["cat", "dog", "fish"]; // array pets

document.write (pets.length); // displays 3

document.write(pets[0]); // displays cat

document.write(pets[5]); // displays undefined

144

145

JavaScript - array

145

var pets = ["cat", "dog", "fish"];

for (var i=0, len=pets.length; i < len; i++) {

document.write("I have a pet "
+ pets[i]
+ ".
");

}
// use a for loop to iterate over the values of an array

JavaScript - array
• array elements need not be all the same

primitive data type

var myList = ["cat", 1000, false, (1==2-1)];

• array elements may contain variables
var a = -333.33;
var myList2 = ["dog", a, 100];

• array elements may be literal arrays as well
var myList3 = [[1,2], ["cat", "mouse"], 0.01];

var myList4 = ["fish", myList];

but the array element counts as a single

146

JavaScript – array literal

• in JavaScript you can omit specifying all the

elements in an array literal

var zoo = ["tiger", , "bear", , "lion"];

has 5 array elements – the second and

fourth elements are undefined

• declaring an array with no initial elements

var emptyList = [];

147

JavaScript – array object

• array objects are the same as array literals

only defined differently using the Array

keyword

• no difference but literal format is shorter

148

var a_obj = new Array(1, 2, 3);

var b_obj = Array(300, 301, 302);

JavaScript – array - adding

• adding new elements to an array is a simple

matter of assigning them based on a new

index
var a = []; // array a is empty
a[1] = "cat";

// index 0 element is undefined
a[3] = "dog";

// array a is length 4 but elements at
// index 0 and 2 are undefined.

149

JavaScript – array - index

• adding new elements to an array using a non-

integer index causes a new property for the

array, instead of an array element
var a = []; // array a is empty

a[1.5] = "clip"; // legal, but no element

if (a.hasOwnProperty[1.5]) {

document.write("property is set");

}

150

JavaScript – array - splice

• removing an element from an array requires

the splice function

array_name.splice(index, number of elements)

var a = ["cat", "and", "dog"];

a.splice(1, 1); // a is ["cat", "dog"]

151

JavaScript – array - delete

• the delete keyword can be used to swap an

array element value with undefined

• using delete in this way does not remove the

element itself or shorten the array

152

var a = ["sun", "moon", "earth"];
delete a[1];

// a is "sun",,"earth"

// length of a is still 3

JavaScript – array - push

• another way to add new elements to an array

in JavaScript is to use the array’s push function

• elements are always added to the end

var a = ["cat", "and"];
a.push("the");

a.push("dog", "story");
// array a now has 5 elements

153

JavaScript – array - pop

• pop removes the last element in an array and

returns it – if the array is empty, undefined
is returned.

var a = ["cat", "and", "dog"];

var b = a.pop();

// array a is ["cat", "and"]
// b is "dog"

154

JavaScript – array - reverse

• the reverse method moves all the elements

in the array into reverse order

155

var batman = ["West", "Keaton", "Kilmer",
"Clooney", "Bale"];

batman.reverse();
document.write(batman[0]); // Bale

JavaScript – array - foreach

• the foreach method defines a call back function

to be applied to each element in the array

• array element values cannot be changed this way

var sum = 0;

function sumthis(value) {

sum += value;

}

var a = [111, 22.2];

a.forEach(sumthis); // sum is 133.2

156

JavaScript – array - sort

• the sort method moves all the elements in

the array into alphabetic order ("30" appears

before "2") – use a function for numeric sort

157

var villain = ["Joker", "Catwoman", "Two-Face",
"Bane", "Riddler"];

villain.sort();
document.write(villain[0]); // Bane

var s = [23, 15, 8, 42, 16, 4];
s.sort(function(a,b) {return a-b});

// array score is now 4,8,15,16,23,42

JavaScript – array - join

• the join method causes all the array

elements to be merged into a single string

with a delimiter (comma is the default

delimiter)

158

var dessert = ["pie", "cake", "sundae"];
var s = dessert.join();

// s is "pie,cake,sundae"

var t = dessert.join(" / ");
// t is pie / cake / sundae

JavaScript – Regular Expression

• a regular expression describes a string pattern

– e.g. apply the pattern /at/ to the string "Cat in the
Hat" matches "Cat in the Hat"

– patterns /AT/, /ta/, and /cat/ will find no matches

• metacharacters such as * + and ? are called
qualifiers and are used in the pattern after a
character

– * denotes zero or more matches

– + denotes 1 or more matches

– ? denotes either 0 or 1 match

159

JavaScript – Regular Expression

• /fe*/ matches "fee" in "two feet" and "f" in

"left arm" but nothing in "my head"

• /to+/ matches "to" in "nine toes" and "too" in

"me too" but nothing in "my tasks"

• /h?ea?/ matches "hea" in "my head" and "e"

in "left foot" and "ea" in "my ear"

160

JavaScript – Regular Expression

• metacharacter . (decimal point) matches any
single character except the newline

– /r.t/ matches "rat","rut","r t" but not "art"

• \ is used to match metacharacters

– /a*/ matches "a*" but not "apple"

• ^ matches beginning of input

– /^A/ matches "A story" but not "the ABCs"

• $ matches end of input

– /x$/ matches "the ox" but not "my axe"

161

JavaScript – Regular Expression

• | (pipe) matches text on either side
– /a|b|c/ matches either the first "a","b",or "c", and

/apple|pear/ matches either "apple" or "pear"

• {n} where n is a positive integer, matches n
occurrences of the preceding character
– /e{2}/ matches the "ee" in "feed" and the first "ee" in

"feeeed", but not "fed"

• {n,m} where n and m are positive integers,
matches at least n and at most m occurrences of
the preceding character
– /r{1,3}/ matches the "r" in "art", the "rr" in "array",

and the first "rrr" in "arrrrgh!"

162

JavaScript – Regular Expression

• [abc] defines a range of any characters to

match. Shorthand range form can use a

hyphen [a-c] = [abc]

– /[a-m]/ matches the "e" in "A pear" and /[a-z]+/

matches "anana" in "Banana"

– /[0-9]/ matches the "4" in "robin4nest"

• negation of the range uses the ^

– /^[a-m]/ matches the "p" in "pear"

– /^a-z/ is same as /^[a-z]/

163

JavaScript – Regular Expression

• Special characters used in regex

• \d matches a single digit – same as [0-9]

• \n matches a new line

• \s matches a single white space, tab, form feed,
new line

• \t matches a tab

• \w matches any alphanumeric including the
underscore – same as [A-Za-z0-9_]

• \xHH matches the character with the hex code
HH e.g. /x20/ = /\s/

164

JavaScript – Regular Expression

• \D matches any non-digit, same as [^0-9]

• \S matches any non white space

• \W matches any non alphanumeric, same as
[^A-Za-z0-9_]

• \b matches a word boundary - \W\w or \w\W
– /\bspo/ matches the "spo" in "my spoon" and no

match in "dispose"

– /\ba\b/ matches the second "a" in "at a mall"

• \B matches a non-word boundary
– /\B../ matches the "ec" in "pecan" but not " a"

165

JavaScript – Regular Expression

• (tree) matches "tree" and remembers the match

using the resulting array’s elements [1],…,[n]

– /([A-Za-z]+)\s(\w+)/ matches "John Smith" in

"100 John Smith 203-300" and remembers "John" and

"Smith" in the resulting arrays [1] and [2]

([A-Za-z]+) means look for one or more

alphabetic characters (any case) and remember them

… e.g. "John"

\s matches a single white space

(\w+) is the same as ([A-Za-z0-9_]+)

166

JavaScript – Regular Expression

• pattern flags – regular expressions have four optional
flags, used singly or combined in any order

– g – indicates global search
• /\w\s/g returns "e", "i", "o" in "fee fi fo fum"

• /\w\s/ returns "e"

– i – indicates case insensitive (ignore case)
• /abc/i is the same as [A-Ca-c]

– m – indicates multi-line search
• makes the ^ $ characters match the start and end of any input line,

as opposed to the entire input text

– y – "sticky" search – match starting at current position in
the target string – non-standard

167

JavaScript – Regular Expression

• the qualifiers * + ? { } are by default, "greedy"

– matches will take as much as it can find

– /a+b+/ matches "aaaabbbb" in "aaaabbbbabc"

• "lazy" matches will stop as soon as minimum

found

– the ? qualifier appended to * + ? { } makes the

match lazy not greedy

– /a+?b+?/ matches "aaaab" in "aaaabbbbabc"

168

Mozilla-specific - let
• JavaScript version 1.7 supports the let keyword for

Firefox browers – not yet an ECMA standard (in draft)

• useful when you want to use an existing variable

name within a separate code block

• need to specify that you wish to use JavaScript 1.7

<script type="application/javascript;version=1.7"></script>

169

var x = 10, y = 2;
let (x=5) {

y = x; // y is now 5
}
document.write(x + " " + y); // 10 5

Course Note References

• http://www.ecma-international.org/publications/standards/Ecma-262.htm

• http://www.reddit.com/r/javascript/comments/fqht8/references_for_javascript_mastery/

• http://www.w3.org/community/webed/wiki/Main_Page

• http://code.google.com/edu/submissions/html-css-javascript/

• http://reference.sitepoint.com/css

• https://developer.mozilla.org/en-US/docs

170

