
XML

1

Objectives

• What is XML

• XML data model

• XML Namespace description

• XSL• XSL

2

What is XML
• EXtensible Markup Language

• A framework for defining other markup languages

• Defined by W3C http://www.w3.org/TR/xml11
standardized in 1998

• Useful as a mechanism to transport and store data

• XHTML is an XML variant of HTML

3

• XHTML is an XML variant of HTML

• Platform independent, license-free, and
internationalized (Unicode)

• Basically a meta-language - XML tags are not
predefined. You define your own tag names.

• Self describing and human-readable

• Uses a DTD (Document Type Definition) to formally
describe and validate the data

XML and HTML

• XML is not a replacement for HTML

• XML and HTML have different goals:

– XML describes data and focuses on what
the data represent

4

the data represent

– HTML structures browser content

XML is extensible

• Tag names which markup HTML documents and the
structure of HTML documents are predefined. The
author of HTML documents can only use tag names
that are defined in the HTML standard (e.g. body, p, a)

• XML allows you to define your own tag names and
your own XML document structure

5

your own XML document structure

• XML is a complement to HTML, a descendant of
SGML (standard generalized markup language)

• XML can be used to structure and describe data used
by web technologies

How XML is used

• How can XML be useful?

• XML can:

– keep data separate from HTML

– serve as a mechanism to exchange

6

– serve as a mechanism to exchange
information aka data serialization – converting

complex data objects into bit sequences

– store data in human readable files or in
databases

XML technologies
• Define syntax of languages

– DTD, XML Schema, XHTML, Office Open XML

• Display data in browsers

– XPath, XSLT

• Store information in databases

– XQuery, RDF

• Facilitate web services data, podcasting• Facilitate web services data, podcasting

– WSDL, SOAP, RSS, Atom, AJAX, mashups

• Platform independent program configuration

– Apache Ant

• Image formats

– SVG (Scalable Vector Graphics)

• Online forms

– XForms
7

8

When to use XML-based format

• Data is structured into a hierarchy form

• Need for a wide range of tools on different
platforms

• Need for data that can ‘outlive’ the • Need for data that can ‘outlive’ the
applications that process it

• Supports internationalization

• Need for human-readable text content

• Possible use with other XML-encoded
formats

9

Sample XML document #1

<?xml version="1.0"?>
<note>
<to> John </to>
<from> Sally </from>

XML documents

should begin with
an XML
declaration.

10

<from> Sally </from>
<heading> Reminder </heading>
<body> Do you have my book?
</body>

</note>

XML documents
use the .xml

file extension as
in note.xml

XML content is

free-format

Sample XML document #2
<?xml version="1.0"?>
<catalog>
<book id="bk101">

<author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>An in-depth look at creating applications with XML.</description>

</book>

XML data must start with a single “root”
or document entity, here, it is <catalog>

11

</book>
<book id="bk102">

<author>Ralls, Kim</author>
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish_date>2000-12-16</publish_date>
<description>A former architect battles corporate zombies, an evil sorceress,
and her own childhood to become queen of the world.</description>

</book>

<catalog>

XML consists of elements
which are enclosed by its start
tag and its end tag. e.g. author,
title, genre, price, etc

The characters between the start and end
tags, if any, are the element’s content.

XML terminology

• Markup

– XML documents are divided into markup and
content

– Markup is any text that either:– Markup is any text that either:

• starts with <

• or, ends with >

• or, begins with & and ends with ;

– Content is anything else (basically the data
within the markup)

12

XML terminology

• Element

– A logical component of an XML document
which either begins with a start-tag and ends
with its matching end-tag (e.g. with its matching end-tag (e.g.
<price>13.50</price), or consists only of an
empty element tag, (e.g. <toppings />)

– The content within the element may contain
markup, including other elements, which are
then called child elements.

13

XML terminology

• Attribute

– A markup construct consisting of a
name/value pair existing inside the tag (e.g.
for the start tag <book bookid= ‘bk101’ > the
name/value pair attribute is bookid/ ‘bk101’) name/value pair attribute is bookid/ ‘bk101’)

– Attributes may be optional

– Attribute value must be in matching single or
double quotes

– More than one attribute may be defined

• order of attribute definitions does not matter

14

XML terminology
• Encoding

– Defines the character set used in the XML
document

– Usually it is UTF-8 (8-bit Unicode
Transformation Format) see www.unicode.orgTransformation Format) see www.unicode.org

• Backward-compatible with ASCII (one byte per
character e.g. ‘a’ is encoded as U+0061)

• Variable length character encoding

• Can encode any Unicode character, such as those
used by other languages e.g. U+8349 is 草 or
“grass” in “Mandarin (simplified)”

15

XML terminology

• Processing Instruction (PI)

– tells a program to perform a specific task

– a PI begins with “<?” and ends with “?>”

– the XML declaration is also a processing – the XML declaration is also a processing
instruction

<?xml version=“1.0” encoding=“UTF-8”?>

16

17

XML Tree

• Conceptually, an XML document is
structured like a tree

– Node

– Root

root

– Root

– Child, parent

– Sibling

18

parent

child

siblings

Nodes in XML Trees

• Text nodes: the content between tags

• Element nodes: the start and end tags

• Attribute nodes: any name= “value” inside
a start taga start tag

• Comment nodes: ignored by the processor

• Processing instructions: <?target value?>

• Root node: the XML tree has one root
node

19

Sample XML file #3

20

•http://www.w3schools.com/XML/cd_catalog.xml

XML Syntax

• Proper XML documents are well-formed
(breaks no tag rules) and valid (XML
data checked against its own DTD rules).

• An XML file must be well-formed before it

21

• An XML file must be well-formed before it
can be validated. A well-formed XML
document obeys the syntax of an XML
document.

• A broken XML file is either not well-
formed or not valid or both.

XML Syntax

• In HTML some elements are not required to have a
closing tag. The following is legal in HTML v4:

<p>It was a dark and stormy night.

<p>Susan went to the kitchen.

• But in XML all elements must have a closing tag :

22

• But in XML all elements must have a closing tag :

<p>It was a dark and stormy night.</p>

<p>Susan went to the kitchen.</p>

• XML tags are case sensitive.

The tag <Letter> is different from the tag <letter>

Element name
• Element names can contain letters, numbers,

periods, underscores, hyphens, but not spaces

• Element names must be defined uniquely within
the XML document (i.e. no name duplication)

• Element name must start with a letter or • Element name must start with a letter or
underscore, but cannot start with reserved words
such as xml

• Acceptable element name: bookstore
Unacceptable: 100book, $author, cost per

23

XML Syntax

• Start and end tags must be written with the
same case:
<Message> not well-formed </message>
<message> is well-formed </message>

• All XML elements must be properly nested

24

• All XML elements must be properly nested
• In HTML some elements can be improperly

nested within each other like this:
 <i> This text is bold and italic </i>

• In XML all elements must be properly nested
within each other like this

 <i> This text is bold and italic </i>

XML Syntax

• Empty tags may use the backslash
(similar to XHTML <hr /> and

• It is legal in XML to use a start-tag/end-
tag pair for empty tags <note></note>

25

tag pair for empty tags <note></note>

• XML comments similar to HTML
<!-- --> cannot use --

<?xml version="1.0"?>
<note>
<heading>
<to> John
<from> Sally

Broken XML document

Missing end tag </to>

26

<from> Sally
Reminder </heading> </from>
<body>Do you have my book?</body>
<date sent>May 30, 2010</date sent>

</Note>

Improper tag nesting

Unmatched tag name
Element name contains space

Well-formed XML

• The main reason you need well-formed
XML is that an XML parser program reads
the XML and generates a structure like a
tree which represents the XML document

27

tree which represents the XML document

• Each “branch” of the tree must be properly
defined so it can be examined

• If a tag is missing or unbalanced, the XML
parser cannot create the tree

XML Validation
• A valid XML document is a Well Formed XML

document which conforms to the rules and
constraints of a Document Type Definition
(DTD)

• Also called a schema or a grammar
• The purpose of a DTD is to define the legal

28

• The purpose of a DTD is to define the legal
building blocks of an XML document

• XML does not require a DTD but it defines the
document structure with a list of legal
elements.

• A DTD can be declared inline in your XML
document, or as an external reference.

Internal DTD

<?xml version="1.0"?>
<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Element note must contain the following

children in this specific order.

PCDATA means

parsed character data

29

<!ELEMENT body (#PCDATA)>

]>

<note>
<to>John</to>
<from>Sally</from>
<heading>Reminder</heading>
<body>Do you have my book?</body>
</note>

parsed character data

– text found between

the start and end tags

– tags inside the text

will be treated as

markup and entities

will be expanded.

External DTD

<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "note.dtd">

<note>
<to>John</to>
<from>Sally</from>
<heading>Reminder</heading>
<body>Do you have my book?</body>

30

<body>Do you have my book?</body>
</note>

The file note.dtd contains
<?xml version="1.0"?>

<!ELEMENT note

(to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Invalid XML file example

<?xml version="1.0"?>
<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Start and end tags for

<to>…</to> appear after

<from>…</from> tags.

31

<!ELEMENT body (#PCDATA)>

]>

<note>
<from>Sally</from>
<to>John</to>
<heading>Reminder</heading>
<sent>Today</sent>
<body>Do you have my book? </body>
</note>

<from>…</from> tags.

Tag <sent> not declared

in the note element

Element Type Declarations

• Element type declarations identify the names of
elements and the nature of their content
<!ELEMENT meal (appetizer+, entree, dessert?)>

<!ELEMENT appetizer (#PCDATA)>

<!ELEMENT entree (#PCDATA)>

32

<!ELEMENT entree (#PCDATA)>

<!ELEMENT dessert (#PCDATA)>

The commas between element names indicate that they must occur in
succession.
The plus after appetizer indicates that it may be repeated more than once
but must occur at least once.
The question mark after dessert indicates that it is optional (it may be
absent, or it may occur exactly once). An asterisk * means 0 or more.
A name with no punctuation, such as entree, must occur exactly once.

Attribute List Declarations

• Identify which elements may have
attributes, what attributes they may have,
what values the attributes may hold, and
what value is the default

33

what value is the default
<!ATTLIST dessert

name ID #REQUIRED

label CDATA #IMPLIED

category (cake | pie | ice-cream) ‘pie’>

#IMPLIED means
label does not have

to be included

category choices for dessert –
pie is the default

Attribute declarations

• Another example:

<!ATTLIST IMG

src %URI; #REQUIRED

name CDATA #IMPLIEDname CDATA #IMPLIED

id ID #IMPLIED

class CDATA #IMPLIED

alt %Text; #REQUIRED

>

34

XML Entities

• Entities are shortcuts to content text

<!ENTITY restaurant “ABC Steak House”>

<!ENTITY owners “Bill and Sue Smith”>

<!ENTITY menu SYSTEM

35

<!ENTITY menu SYSTEM
“http://www.abcSteakHouse.com/entities/

entities.xml”>

<dining> &restaurant; &owners; &menu;
</dining>

Why use a DTD?

• XML provides an application independent way
of sharing data.

• With a DTD, independent groups of people can
agree to use a common DTD for interchanging
data.

36

data.

• Your application can use a standard DTD to
verify that data that you receive from the
outside world is valid.

• You can also use a DTD to verify your own
data

DTD Alternative

• XSD (XML Schema Document) is a W3C
technology for defining XML schemas

• Unlike DTD XSD has namespace
awareness and can use data types such awareness and can use data types such
as string, boolean, float, date, time, etc –
25 derived data types in all

• All the named schema components belong
to a target namespace, and the target
namespace is a property of the schema

37

XSD Example
<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified“
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Address">

<xs:complexType>

<xs:sequence>

<xs:element name="Recipient" type="xs:string" />

<xs:element name="House" type="xs:string" /><xs:element name="House" type="xs:string" />

<xs:element name="Street" type="xs:string" />

<xs:element name="Town" type="xs:string" />

<xs:element name="PostCode" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

38

Displaying XML

• IE and Firefox have differing approaches
to displaying XML.

• Can display XML data inside an HTML
page by using JavaScript to import data

39

page by using JavaScript to import data
from an XML file.

• Can also use CSS files with XML, but
XSL files (Extensible Style Language)
are the better way to go

XML format

• Notice that at this point nothing has been said
about the format of the final document.

• From the neutral format provided by XML
users can either chose to display the memo:

40

users can either chose to display the memo:

– on a screen, the size can be varied to suit user
preferences,

– to print the text onto a pre-printed form,

– or to generate a completely new form, positioning
each element of the document where needed

XML validation

• http://www.xmlvalidation.com

• Other XML schema validators

http://www.w3schools.com/dom/dom_validate.asp

41

http://www.w3schools.com/dom/dom_validate.asp

http://www.validome.org/xml/

Namespace

• Windows

• Visio

• NotePad

• Windows

• Nails

• Screws

Microsoft Windows Acme Hardware

42

• NotePad

• Paint

• Word

• Screws

• Paint

• Tape

Microsoft.Windows
Microsoft.Paint

AcmeHardware.Windows
AcmeHardware.Paint

XML namespace

• You may want to use the same tag name
or attribute for different types of
information

• HTML tag <table> vs something else that

43

• HTML tag <table> vs something else that
uses the same tag name

• XML uses namespace to differentiate

• Defining the namespace:

xmlns:prefix = ‘namespace identifier’

XML namespace

<meal xmlns:d='http://www.mandl.com/'>

<appetizer> salad </appetizer>

<appetizer> calamari </appetizer>

44

<appetizer> calamari </appetizer>

<entree> pepperoni pizza </entree>

<dessert> vanilla ice cream </dessert>

</meal>

XML namespace

<d:meal xmlns:d='http://www.mandl.com/'>

<d:appetizer> salad </d:appetizer>

<d:appetizer> calamari </d:appetizer>

45

<d:appetizer> calamari </d:appetizer>

<d:entree> pepperoni pizza </d:entree>

<d:dessert> vanilla ice cream </d:dessert>

</d:meal> (same meaning as prev slide)

XML namespace identifiers

• XML namespace identifiers must conform to a
specific syntax—the syntax for Uniform
Resource Identifier (URI) references.

• A URI is defined as a compact string of

46

• A URI is defined as a compact string of
characters for identifying an abstract or physical
resource. In most situations, URI references are
used to identify physical resources (Web pages,
files to download, etc), but in the case of XML
namespaces, URI references identify abstract
resources, specifically, namespaces.

XML namespace identifiers

• Two general types of URIs: URL and
URN

• URL: http://www.pizza.com/menu

• URN: urn:www-pizza-com:menu

47

• URN: urn:www-pizza-com:menu

• Most important aspect is that they must be
unique or the namespace will be confused

XML namespace
<mandl>

<m:menu xmlns:m='http://www.mandl.com/menu'>

<m:name> Daily Special </m:name>

<m:cost> 12.50 </m:cost>

</m:menu>

<serv:Server xmlns:serv =

48

<serv:Server xmlns:serv =

"http://www.mandl.com/servers">

<serv:name>Smith, John</serv:name>

<serv:address>11 North Rd</serv:address>

</serv:Server>

</mandl>

XSL Languages

• XSL = Extensible Stylesheet Language

• Need for an XML-based stylesheet

• XSL is to XML what CSS is to HTML

• But XSL is more ... consists of three parts:• But XSL is more ... consists of three parts:

– XSLT – transform XML documents

– XPath – navigating in XML documents

– XSL-FO – formatting XML documents

49

XSL – Style Sheet

50

XSLT Transformation

• Most important part of XSL is XSLT

• Transforming XML into XHTML

<xsl:stylesheet version=“1.0”

xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

... xsl style ...

<xsl:stylesheet>

51

Create an XSL Style Sheet
<?xml version="1.0" encoding=“UTF-8"?>

<xsl:stylesheet version="1.0” xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h2>My CD Collection</h2>
<table border="1">

<tr bgcolor=“yellow">
<th>Title</th>

52

<th>Title</th>
<th>Artist</th>

</tr>
<xsl:for-each select="catalog/cd">
<tr>
<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="artist"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>

</xsl:template>

</xsl:stylesheet>

Saved in a

file named
cdcatalog.xsl

Sample XML to transform

<?xml version="1.0" encoding=“UTF-8"?>
<catalog>
<cd>
<title>Empire Burlesque</title>
<artist>Bob Dylan</artist><artist>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>
<year>1985</year>

</cd>

</catalog>

53

Link XSL Style Sheet to XML

<?xml version="1.0" encoding=“UTF-8"?>

<?xml-stylesheet type=“text/xsl” href=“cdcatalog.xsl”?>
<catalog>
<cd>
<title>Empire Burlesque</title>

54

<title>Empire Burlesque</title>
<artist>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>
<year>1985</year>

</cd>

</catalog>

Load XML file in browser

55

XSL template Element

• The <xsl:template> element builds
templates

• The match attribute associates a template
with an XML element via an XPathwith an XML element via an XPath
expression

<xsl:template match=“/”> associates the
template with the root of the XML

56

XSL value of Element

• The <xsl:value-of> element extracts the
value of an XML element and add it to the
output of the transformation (to browser)

• The select attribute contains an Xpath• The select attribute contains an Xpath
expression where the forward slash is
used similarly to selecting subfolders

<xsl:value-of select=“catalog/cd/title”/>

57

XSL for each Element

• The <xsl:for-each> element enables
‘looping’ through each element in the xml

• The select attribute is an XPath
expressionexpression

<xsl:for-each select =“catalog/cd”>

...

</xsl:for-each>

58

loop for each cd

element within the

root catalog element

XSL sort Element

• The <xsl:sort> element sorts output

<xsl:for-each select=“catalog/cd”>

<xsl:sort select=“artist”/><xsl:sort select=“artist”/>

...

</xsl:for-each>

59

XSL if Element

• The <xsl:if> element provides a conditional
test of the transformed XML content

• The test attribute contains the logical
expression to evaluateexpression to evaluate

<xsl:if test=“price > 20”>

<tr>
...
</tr>

</xsl:if>

60

Display the cd row

if this cd’s price value

is greater than 20.

61

#@$%&*@!
sd k df;kaj
fk;s
df;aklsdjf
asdklfj
sdkf kdsf

censored

censored

censored

